Comparison of Widely Used Listeria monocytogenes Strains EGD, 10403S, and EGD-e Highlights Genomic Differences Underlying Variations in Pathogenicity

نویسندگان

  • Christophe Bécavin
  • Christiane Bouchier
  • Pierre Lechat
  • Cristel Archambaud
  • Sophie Creno
  • Edith Gouin
  • Zongfu Wu
  • Andreas Kühbacher
  • Sylvain Brisse
  • M. Graciela Pucciarelli
  • Francisco García-del Portillo
  • Torsten Hain
  • Daniel A. Portnoy
  • Trinad Chakraborty
  • Marc Lecuit
  • Javier Pizarro-Cerdá
  • Ivan Moszer
  • Hélène Bierne
  • Pascale Cossart
چکیده

For nearly 3 decades, listeriologists and immunologists have used mainly three strains of the same serovar (1/2a) to analyze the virulence of the bacterial pathogen Listeria monocytogenes. The genomes of two of these strains, EGD-e and 10403S, were released in 2001 and 2008, respectively. Here we report the genome sequence of the third reference strain, EGD, and extensive genomic and phenotypic comparisons of the three strains. Strikingly, EGD-e is genetically highly distinct from EGD (29,016 single nucleotide polymorphisms [SNPs]) and 10403S (30,296 SNPs), and is more related to serovar 1/2c than 1/2a strains. We also found that while EGD and 10403S strains are genetically very close (317 SNPs), EGD has a point mutation in the transcriptional regulator PrfA (PrfA*), leading to constitutive expression of several major virulence genes. We generated an EGD-e PrfA* mutant and showed that EGD behaves like this strain in vitro, with slower growth in broth and higher invasiveness in human cells than those of EGD-e and 10403S. In contrast, bacterial counts in blood, liver, and spleen during infection in mice revealed that EGD and 10403S are less virulent than EGD-e, which is itself less virulent than EGD-e PrfA*. Thus, constitutive expression of PrfA-regulated virulence genes does not appear to provide a significant advantage to the EGD strain during infection in vivo, highlighting the fact that in vitro invasion assays are not sufficient for evaluating the pathogenic potential of L. monocytogenes strains. Together, our results pave the way for deciphering unexplained differences or discrepancies in experiments using different L. monocytogenes strains. IMPORTANCE Over the past 3 decades, Listeria has become a model organism for host-pathogen interactions, leading to critical discoveries in a broad range of fields, including bacterial gene regulation, cell biology, and bacterial pathophysiology. Scientists studying Listeria use primarily three pathogenic strains: EGD, EGD-e, and 10403S. Despite many studies on EGD, it is the only one of the three strains whose genome has not been sequenced. Here we report the sequence of its genome and a series of important genomic and phenotypic differences between the three strains, in particular, a critical mutation in EGD's PrfA, the main regulator of Listeria virulence. Our results show that the three strains display differences which may play an important role in the virulence differences observed between the strains. Our findings will be of critical relevance to listeriologists and immunologists who have used or may use Listeria as a tool to study the pathophysiology of listeriosis and immune responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strain-Specific Interactions of Listeria monocytogenes with the Autophagy System in Host Cells

Listeria monocytogenes is an intracellular bacterial pathogen that can replicate in the cytosol of host cells. These bacteria undergo actin-based motility in the cytosol via expression of ActA, which recruits host actin-regulatory proteins to the bacterial surface. L. monocytogenes is thought to evade killing by autophagy using ActA-dependent mechanisms. ActA-independent mechanisms of autophagy...

متن کامل

Divergent Evolution of the Activity and Regulation of the Glutamate Decarboxylase Systems in Listeria monocytogenes EGD-e and 10403S: Roles in Virulence and Acid Tolerance

The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracell...

متن کامل

Genome comparison of Listeria monocytogenes serotype 4a strain HCC23 with selected lineage I and lineage II L. monocytogenes strains and other Listeria strains

More than 98% of reported human listeriosis cases are caused by specific serotypes within genetic lineages I and II. The genome sequence of Listeria monocytogenes lineage III strain HCC23 (serotype 4a) enables whole genomic comparisons across all three L. monocytogenes lineages. Protein cluster analysis indicated that strain HCC23 has the most unique protein pairs with nonpathogenic species Lis...

متن کامل

The Effect of Oxygen on Bile Resistance in Listeria monocytogenes.

Listeria monocytogenes is a Gram-positive facultative anaerobe that is the causative agent of the disease listeriosis. The infectious ability of this bacterium is dependent upon resistance to stressors encountered within the gastrointestinal tract, including bile. Previous studies have indicated bile salt hydrolase activity increases under anaerobic conditions, suggesting anaerobic conditions i...

متن کامل

Implications of the inability of Listeria monocytogenes EGD-e to grow anaerobically due to a deletion in the class III NrdD ribonucleotide reductase for its use as a model laboratory strain.

Listeria monocytogenes is a Gram-positive facultative intracellular bacterium that causes life-threatening diseases in humans. It grows and survives in environments of low oxygen tension and under conditions of strict anaerobiosis. Oxygen-limiting conditions may be an important factor in determining its pathogenicity. L. monocytogenes serovar 1/2a strain EGD-e has been employed intensively to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014